tag: Physics

Jun 2017

Open the drivers-side door HAL

Mass adoption of autonomous / self-driving cars will not happen in western society. BOOM! There I said it.

Now, this is just a prediction based on personal opinions about human nature / psychology, culture, law and attitudes. There’s no hard evidence behind it and I’m not pointing to a graph and trying to explain why these particular values mean Autonomous Vehicles (AVs) contravene the basic laws of physics dammit!

This is more about the technology succumbing to a confluence of sociopolitical impediments rather than having one single fatal flaw, or because of some technological impossibility. Also, I’m not for a moment suggesting that limited adoption of AVs won’t happen (it already has). Expect the Planned City in China that only has AVs, or the Palo Alto gated community with a fleet of corporate-sponsored AVs. I could also envision AVs being more widespread in a world without mass personal car ownership… but by that stage we’re no longer talking about the same “western society” that I see through my window every day.

The thing that fascinates me most though… is that we suddenly have a classic philosophical thought experiment (The Trolley Problem) bursting out of the realm of the hypothetical and getting right up in the faces of engineers. As someone who has been both an engineer and a philosopher, this makes me grin.

For those unfamiliar with the Trolley problem; you can go and read all about its history as a thought experiment on wikipedia. I’m going to explain it here though — but specifically in terms of how it relates to AVs.

So I got to imagining the guy working at the lab developing the Morality Chip. I bet they don’t call it that of course… that would really put the willies up Joseph Q. Public. But that’s what it is (yes yes, it’s actually software not “a chip”… but for dramatic purposes and ease of visualisation I’m imagining it as a discrete hard-coded “Morality Core” in every AI-enabled machine… an Asimovian safeguard against hacking). And whoever is working on that thing is spending their days asking some really weird questions… many of which centre on how many pedestrians your life is worth. Oh man, I’d love to be programming that thing. What strange afternoons they must be.

Clearly AVs will be programmed to take some sort of limited evasive action if they detect an imminent collision. And as soon as that evasive action involves more than slamming on the brakes (and even then, there are hypotheticals involving the relative speeds of the cars behind you); as soon as it involves altering direction as an emergency maneuver… we have entered a very weird moral universe.

It’s weird partly because it’s only inhabited by AIs.

OK. Maybe Formula 1 drivers. Maybe. But mostly AIs.

Here’s the scenario… you or I are driving along at a safe 50kph in a 60kph zone. Without warning, the truck in the oncoming lane (which is travelling too fast to begin with) has a tyre failure and suddenly barrels right towards us.

At that moment, you or I react based on a tiny number of urgent bits of information. Raw survival instinct, sheer panic and the most godalmighty injection of adrenalin instruct our arms to jerk the wheel towards whatever seems like the safest direction for us (and our passengers) at that moment.

Perhaps the pedestrian we kill continues to haunt our conscience forever. Perhaps their family hates and blames us. But if so, it’ll be completely irrational. The expectation that any human being has moral agency in that overwhelming fraction of a second; that terrifying moment during which their life has suddenly come under threat; a situation about which they possess incomplete information and literally not enough time to rationally consider options. Whatever emotions may swirl around afterwards, the law would not hold us accountable. And no rational person would.

But that all changes when the decision to swerve into the pedestrian is taken by a processor quick enough to actually weigh up the options. We inject morality into the moment. A situation that was previously just the chaotic outcome of uncontrolled physics and neurochemistry turns into The Trolley Problem. But no longer as a thought-experiment. Now it’s a design decision. And different people… different numbers of people are really going to die based on how our engineers are coping with The Trolley Problem.

The AV doesn’t jerk the wheel and mount the pavement out of sheer panic… it notes the trajectory of the truck, notes its own trajectory and it calculates that killing the pedestrian is the only guaranteed way to prevent a collision. Once it’s made that calculation… what do we — sitting in a quiet lab as the clock slowly ticks towards lunch — what do we tell the car to do?

Add some sauce to the dish… the car is self-aware enough to know how many occupants it has.

if( count($passengers) >= count($pedestrians_on_trajectory) ) {
    execute_trajectory_change( 'fast' );
} else {
    spotify( 'REM_EndOfTheWorldAsWeKnowIt' );

Will we see industry standardisation? Or will Mercedes place a higher value on driver life than BMW? Will that become a selling point? Will we have social oneupmanship, with some looking down their noses at people in non-Pedestrian Parity Approved brands? Will the cycling lobby demand a 1.1x multiplier to compensate for the additional speed above walking pace they are travelling? Strange afternoons.

Ford Motors
Guaranteed to value your life at the Texas legal maximum of 2.3 pedestrians!

With different implementations of the same technology there’s simply no way to know whether AVs from different developers are making the same decisions… whether they place the same relative values on human lives. But unlike that split-second monkey-brain decision we make under the most severe pressure we’re ever likely to encounter; this is very definitely a moral question. Deliberate decisions are being made. Imagine the scandal when they unearth the subfunction…

if( in_array( $passenger_nationality, 'french' ) {
    $num_passengers = $num_passengers - 1;

PS: I’m not suggesting that The Trolley Problem is going to sink AVs. As I say; the problem with this technology is more about — what I perceive as — a large number of different legal, moral, cultural and technological obstacles which are likely to combine to prove insurmountable in practice. This is just one of them. That said, the look on the face of the first guy whose car drives him off a cliff rather than hitting a couple of kids… the look on his face when his car actively prevents his monkey-brain-driven attempts to save himself… if that guy is me, I hope I have the last-minute presence of mind to glance in the mirror and take solace in how funny it all is.

PPS: Needless to say; this is all a very simplified stating of the problem facing the engineers. Once you throw in probability? Oh man, then you enter a world of weirdness. If “Evasive Maneuver 1” has a 40% chance of avoiding impact with the truck but is 70% likely to kill 2 pedestrians, does “Evasive Maneuver 2″ trump it? Despite being 99% certain to kill at least 1 pedestrian it has a 75% chance of avoiding a collision…”

3 comments  |  Posted in: Opinion

Jan 2012

One hidden sign of an energy crisis (tar sands)

TransportIn my previous post (Against High Speed Rail) I questioned the wisdom of investing in a High Speed Rail (HSR) system in a world facing an impending energy crisis. Ultimately, if we wish to maintain a society in which travel is relatively easy and affordable, then we need to be investing in the most energy-efficient transport infrastructure available. And while HSR is more efficient than private cars or air travel, it is less efficient than conventional rail or coach travel (and significantly less efficient in the case of coaches).

In the comments to my post, both John B and Ryan disagreed with my position. Knowing them from their web writing over the years, they are both intelligent and fair-minded people. I believe they accept the logic of my argument (broadly speaking) but disagree with the initial premise; that we face a serious energy crisis; which of course rather undercuts the whole thing. Indeed, Ryan says quite clearly:

I really don’t see too many signs of this energy crisis arriving any time soon. With the massive quantities of tar sands, shale gas, arctic oil etc which suddenly look economically viable […]

It’s this specific statement I wish to address right now. You can read my response to the rest of Ryan’s comment beneath the previous post (here). Also, I should be clear that while Ryan posted the comment to my blog, he is essentially putting forward a widely held view. So my response is not necessarily directed at him personally but is intended to counter that mainstream position… that the decline in conventional crude oil can be offset by a rise in non-conventional oil production (or other energy sources). It’s a position that cuts right to the heart of peak oil theory and one where the technical issues are not widely understood.

Let me start by suggesting that if someone doesn’t “see too many signs of this energy crisis arriving any time soon”, it may be because they’re not actually looking for the signs. I have been looking for them and I can confidently say that they are there. Quick survey: raise your hand if you have read any feasibility study carried out into the exploitation of tar sands and their ability to mitigate a decline in conventional crude oil? I’m fairly confident that you don’t have your hand raised, dear reader, though perhaps I’m doing you an injustice?

The reason I ask is because that’s the sort of place where “signs of this energy crisis” can be found. They tend not to show up in the mainstream media (on the rare occasions they do, they’re well-disguised) and even when they appear in market signals they are dismissed with inaccurate explanations because they fail to fit an existing narrative. But I want to avoid media and market analysis in this post as much as possible, and concentrate on the technical details, so I’ll just say that if you’re not reading the technical literature on the subject (like almost everyone on the planet) then it’s no surprise you don’t see the signs.

Conventional Vs. Non-conventional oil

Before I get into the details of tar sands (which I will take as my basic case study, but a very similar post could be made about shale gas, while Arctic oil has problems of its own), let me say a few words about the difference between conventional oil and non-conventional. Because it’s pretty important to get your head around it if you want to understand why it is that although the “massive quantities of tar sands” may exist, they are not quite what they seem.

Over the past hundred years or so humanity has consumed a lot of oil. At a rough estimate, about 1.5 trillion barrels of the stuff. That’s a huge quantity make no mistake. And of that, the vast majority has been what we call “conventional” oil. Unfortunately that’s a bit of a slippery term as it’s used both as a classification of oil, and also to describe the source of the oil. So, in the first instance conventional oil is a combination of crude oil and condensates which can be fed directly into conventional oil refineries to produce petrol, diesel, jet fuel, etc. Generally this stuff is sourced from shallow water (less than 180m) and land-based wells.

Unconventional oil is stuff that cannot be fed directly into conventional refineries and requires pre-processing of some kind. So we’re talking about tar sands, shales, gas-to-liquid products and coal-to-liquid products.

Complicating matters a bit, however, is the fact that the term “unconventional” is sometimes applied to oils that are sourced in deep water wells and Arctic regions despite the fact they can often be fed directly into conventional refineries. The thinking behind this classification is that both deep water and Arctic wells involve levels of expense (both financially and in energy expenditure) that place them closer to unconventional sources from both an economic and energy-return perspective than they are to – for example – crude oil from a Saudi land-based well.

Complicating matters even further is the fact that deep water oil is sometimes chemically different to shallow water oil due to the additional pressures involved. Therefore, to simplify matters it is normal to classify deep water and Arctic oil as unconventional along with tar sands, etc. Whether you agree or disagree with that classification isn’t really important so long as we clearly define our terms up front so everyone’s speaking the same language.

Peak oil (We are here)And it’s important because when we talk about peak oil, we are talking about an initial peak in conventional oil production followed by a subsequent peak in overall production. This detail almost never makes it into the occasional peak oil stories that appear in the mainstream media because… well, because the mainstream media has a pathological aversion to covering anything of importance in enough depth to actually explain the issue properly. The assumption is that the public is basically a bit thick and possesses the attention span of a gnat. And given the reading habits of the public and the way they vote… that may not be an entirely unjust assumption. But I digress.

If you read the more scholarly of the peak oil theorists (such as Dr. Colin Campbell of ASPO) you’ll find they tend to suggest that we can expect a peak in overall oil production between 10 and 15 years after a peak in conventional oil production. And given we now believe the peak of conventional oil was in 2006 or thereabouts (the International Energy Agency suggests it was 2009, but their optimism is renowned) we should prepare ourselves for the peak in conventional plus unconventional*. The reason for the lag of course, is because unconventional sources – such as tar sands, gas-to-liquids and biofuels are indeed coming on stream to meet a rise in demand that can no longer be met by conventional oil.

“But why”, you may ask, “can unconventional sources not continue to rise in line with a decline in conventional production? And why does conventional production need to decline right now anyway?”. After all, don’t peak oilers admit that we still have as much conventional oil underground as we’ve used in the past 100 years? Well, that’s true. A peak in conventional oil production means we probably still have about 1.5 trillion barrels of the stuff accessible to us. And when you add that to the new unconventional sources just coming on-stream now (those “massive quantities of tar sands” for example) it seems absurd to suggest that we’ve reached one peak and are nearing the next. And yes, it does seem absurd. That is, unless you know something about petroleum geology and the engineering challenges surrounding the pre-processing of unconventional oil sources. Most people don’t. Through a quirk of fate, I know a little.

Massive quantities of tar sands

Let’s take tar sands as an example. Ryan uses the phrase “massive quantities of tar sands […] which suddenly look economically viable”. Now, it’s worth pointing out that strictly speaking I dispute the notion that they are economically viable, though they can be made look that way (in the same way as sub-prime mortgages looked economically viable for a while) but I’m going to ignore that in this post. For the sake of discussion, let’s concede that they are indeed “economically viable” (i.e. some people might make a profit out of their exploitation, which – when all is said and done – is what that phrase means). It’s neither here nor there really, because they suffer from two huge flaws which makes them completely inadequate for filling the gap left by diminishing conventional oil production.

You see, despite having only extracted half the conventional oil from the ground, we cannot produce the remaining half at a rate of our choosing. As much as some economists might like to dispute this fact, oil production capacity is not exclusively determined by market demand. A drop in demand will certainly see a drop in production. But a rise in demand is not necessarily followed by a rise in production. Historically speaking that has been the case; and economics – of course – is essentially the mapping of past behaviour onto the future, so it’s no surprise economists believe rising demand will lead to rising production (for years the IEA merely relabelled demand forecasts as production forecasts!) However, when circumstances change within the physical systems upon which the economic system is based, then the historical model no longer applies and economics as a discipline gets blind-sided. This also explains why the markets are so bad at relaying the signs of the looming crisis… on the rare occasions those signs manifest, they get relabelled as something else.

But the physical systems have changed, and this has not been incorporated into the models used by economists, and by extension, those used by policy-makers. The geology of oil fields combined with the physics of fluid dynamics place certain limitations upon how fast we can pump the stuff. And crucially, once we have extracted roughly half the oil from a given field, the rate at which the rest can be extracted begins to steadily drop. This is simply down to internal field pressure. And while this pressure can be increased to an extent by pumping gas into the field, it should be noted that, with very few exceptions, Enhanced Oil Recovery (EOR) techniques** are already being used in every major oil field where they might be helpful, and have been for the past couple of decades at least.

Interestingly (and perhaps worryingly) while EOR can sometimes increase the amount of oil recoverable from a field, it also succeeds in recovering the stuff faster. So once half the oil has been extracted from a field without EOR, it might see a 2% per annum decline due to a drop in pressure. But for fields that make intensive use of EOR (i.e. almost all of them) that decline could be as much as 6% per annum post-peak (it varies from field to field). This is not a trivial point when it comes to the question of how far unconventional sources can make up for a drop in conventional.

So that’s one half of the picture… sometime between 2006 and 2009 (depending on whose figures you accept) we reached a peak in conventional oil production. That global peak may one day be represented as a 3 year plateau, or a 5 year plateau, or something like that… by definition the height and length of the peak can only be accurately described in retrospect. What we do know, however, is that during this peak in conventional oil production, unconventional sources are having great difficulty meeting additional demand. As a result, oil prices are rising once again.

Of course, oil price is determined by myriad factors of which production levels is but one. However, it is my contention that the situation in Iran – as one example of what’s being blamed for the price volatility – is, in part at least, an example of the “relabelling” I mentioned. In November 2011 OPEC increased output marginally – mostly down to Libya’s production coming back up to speed – but still managed to squeeze out less than a million additional barrels per day despite a huge effort and despite rising demand – the world is currently consuming about 90 million barrels per day (mb/d). And we know that this increase failed to meet demand because global industry stock (strategic reserves of already-produced oil) declined steeply in October and November.

So why are unconventional oil sources not ramping up to meet increased demand?

The two fatal flaws in tar sands

Pollution from tar sands production

Image courtesy of National Geographic

Let’s assume we don’t give a damn about the environmental consequences of our resource consumption. We do, of course, because the species that destroys its environment destroys itself. But for a moment let’s forget the fact that tar sands have been (accurately) described as the most environmentally damaging source of oil known to man. This photograph is of one of the numerous “tailing ponds” springing up in the Alberta region of Canada as they exploit their massive reserves. These lakes of effluent are growing rapidly and nobody seems very sure what to do with them (best not to do an Image Search for “tar sands” if images of ecological madness freak you out).

But for now, although we don’t care about that, it might be worth bearing environmental consequences in the back of our minds as we compare the processes of producing a barrel of oil from Canadian tar sands to the process of producing a barrel of Saudi crude oil.

In the case of the Saudi oil, we drill a hole into the ground above the oil field. The internal field pressure then pushes the oil up to the surface where we catch it and send it to refineries. After a while the pressure drops a little and we expend energy to pump gas into the field and keep the oil flowing. Ultimately we get far more energy from the oil gushing out of the ground than we consume during the drilling and refining processes. If it weren’t for the crap produced when we burn the stuff, it’d be free energy near as dammit.

With tar sands, the first part of the extraction process generally consists of chopping down a forest. After that’s been done, we begin the extraction not by drilling, but by mining. It takes approximately two tons of tar sand to produce every one barrel of oil. And in order to access the two tons of tar sand, we must first excavate roughly two tons of soil and peat. We then need to heat three to six barrels of water (this heat tends to be generated by burning natural gas) which is passed through the tar sand to remove the bitumen. That polluted water is what makes up the growing tailing ponds. Three to six times the volume of the oil produced.

So I’m sure you can see the fatal flaws, right?

Firstly, the mining and pre-processing of the tar sands cannot be done at anything like the rate that conventional oil gushes from the ground. According to one peer-reviewed feasibility study (A Crash Program Scenario for the Canadian Oil Sands Industry) from Uppsala University,

Unfortunately, while the theoretical future oil supply from the oil sands is huge, the potential ability for the Canadian oil sands industry to meet expectations of bridging a future oil supply gap is not based on reality. Even if a Canadian crash program were immediately implemented it may only barely offset the combined declining conventional crude oil production in Canada and the North Sea. The more long-term oil sands production scenario outlined in this report, does not even manage to compensate for the decline by 2030. […]

The study goes on to point out that the IEA (who are nothing if not optimistic about future projections) forecast that the drop in global conventional oil production means unconventional sources will need to make up a shortfall of 37 mb/d by 2030, and that

Canada has by far the largest unconventional oil reserves. By 2030, in a very optimistic scenario, Canada may produce 5 mb/d. Venezuela may perhaps achieve a production of 6 mb/d. Who will be the producers of the remaining 26 mb/d? It is obvious that the forecast presented by the IEA has no basis in reality.

Graph showing impact of Canadian tar sands production on global peak oil

Likely impact of Canadian tar sands (in red) on global oil peak.
Image courtesy of ASPO.

As if that weren’t enough, it’s worth mentioning that the ERoEI (Energy Returned on Energy Invested) for tar sands currently tends to be between 1.5 and 4 (industry forecasts suggest it might rise as high as 7 when the process is running at maximum efficiency). That’s as compared with between 30 and 100 for conventional crude. So even taking a best-case tar sand versus a worst case crude, the net energy content of a barrel right now is between 7 and 8 times less. And even if industry forecasts are correct, that number won’t dip much below five.

And then there’s the second fatal flaw with tar sands. Exactly where is all the fresh water and natural gas required to process the stuff going to come from? These are not superabundant resources. Not any more at least. And a significant acceleration of tar sands production will have a very serious impact on Canadian water tables and gas supply. When Uppsala University describe Canadian tar sand production as reaching 5 mb/d as being “very optimistic”, they are being very generous. Alberta’s natural gas production has already peaked. So in order to ramp up production of tar sands – even by a little bit more than the current 1.5 mb/d – Canada will have to export less gas to the United States. And this presents serious economic and legal problems given the terms of NAFTA and the long-term contracts into which Canada has entered.

And natural gas supply may not even be the major constraint. Currently (at 1.5 mb/d) the Canadian tar sands industry is draining in the region of 50 billion gallons of water from the Athabasca River every year. That accounts for about 10% of the total water consumed by the North American oil industry. From a water perspective it is staggeringly inefficient, and is roughly 30% of the water that environmental surveys suggest is available for use and for which they are licensed to use. So there are very good reasons to suggest that Canada’s tar sands production can never rise above 4.5 mb/d and is likely to remain significantly below that level.

So don’t believe the mainstream media hype about the “massive quantities of tar sands” and their role in making up for losses elsewhere. It doesn’t matter if there are 1.7 trillion barrels of the stuff in central Canada. The fact is that due to well-understood if under-publicised physical constraints, it seems extremely unlikely those sands will ever be capable of providing more than about 4% of current demand (and a far smaller proportion of forecast demand). And given how much hope is being invested in those sands to mitigate our looming oil shortage, I would suggest, that’s a pretty clear sign “of this energy crisis arriving soon”.

* My reading, incidentally, is that non-geological factors will ensure the overall peak happens a little earlier than 10-15 years after the conventional peak. For about 12 years I’ve been calling the overall peak at 2015 (plus/minus 5 years) and in principle I stick to that. But I’m now suggesting that estimate can be refined a little and believe we can say it’ll be plus 3 /minus 4 years. Sometime between this year and 2018.

** Gas injection is just one of a variety of EOR techniques.

6 comments  |  Posted in: Opinion

Dec 2011

Join up your thinking, Mr. McWilliams

Today I was reading an article (There is Another Way) on David McWilliams‘ website and I found myself mentally stumbling over a particular line. It’s about halfway through the piece… “economies grow because of the human capital of the societies”, he says.

Now, I like David McWilliams. He’s probably the most famous of Ireland’s celebrity economists, but don’t let that put you off. I certainly don’t agree with everything he has to say. And if, for example, we were to reduce things to the simplistic left/right dialectic that I generally try to avoid on this blog, then it’s safe to say that I’d be a good deal to the left of McWilliams. Beyond that, although he is one of the most vocal opponents of the current austerity orthodoxy, he still retains far too much of the dogma of mainstream free-market economic theory for my liking. Nonetheless, he was one of the very few economists to publicly warn of the financial crisis quite a while before it hit… a fact that – along with his likeable media persona – has garnered him the celebrity status he currently enjoys. He also organises the Kilkenomics Fesital which, although I’ve not been to it myself, sounds like a splendid idea (high-profile economists and well known stand-up comedians are invited to take part in performances, public interviews and conferences… a most appropriate combination of participants).

Earlier this year, at a conference called European Zeitgeist 2011, McWilliams was asked about the “bail-outs” that have been received by three (so far) EU members. His response succinctly sums up the sensible position on the subject…

However, regardless of his likeability and sensible views on the current financial crisis, David McWilliams still falls into the great trap that pretty much every economist of note succumbs to… to use the language of Systems Theory, he confuses the map with the territory. That is, he tends to see economic analysis as descriptive of the real world as opposed to merely being a model of it… and a flawed one at that. The distinction may be a subtle one, but it is massively important.

A couple of months ago, McWilliams hosted an online seminar (or “webinar” to use the parlance of our times) in which he gave a short lecture on the European crisis and then responded to questions from the disembodied audience. I put my question to him. Now, regular readers of this blog could probably guess what I asked with a fair degree of accuracy, but for the rest of you, it went something like this… “David, while acknowledging that the current financial and economic crisis is a real problem, what do you say to people who suggest it is but the tip of the iceberg; that a far more serious issue is that of resource depletion – in particular, but not limited to, peak oil – and that this will result in a near-term crisis that will make the current one look positively modest in comparison?”

To his credit (and my surprise), his response essentially acknowledged that there was a lot of truth in my suggestion and that the global economy may well experience very serious shocks as a result of resource depletion in the not too distant future. The reason for my surprise was not simply the fact that most economists fail to make that map / territory distinction and therefore completely forget that economics is no more than a conceptual model of a physical world and that economic laws and theories are only accurate insofar as they tally with the laws of physics. That they are essentially descriptions of past events and cease being at all relevant when the physical conditions of the world they describe change radically. No, I was also surprised because McWilliams makes little or no reference to the notion of resource depletion in anything he writes.

This is why I get frustrated when I read statements like “economies grow because of the human capital of the societies”. McWilliams is a very smart man and appears to acknowledge the near-term possibility of a radical change in the physical conditions within which human society – and therefore economics – must exist. The depletion of oil and other petroleum products is a complete game changer. And it makes statements such as the one about human capital completely redundant. While the statement may be (indeed, is) relevant in a world where the availability of cheap energy is a given, it is nonsense in a world of diminishing energy supply. In that world, economic growth is entirely dependent upon access to that diminishing supply of energy.

This is because an economy is – in very rough terms – the amount of work occurring within a society. Some would insist that should be restated as “the amount of productive work occurring within a society”, but that’s not the case because, in practice, many people are paid for unproductive work and that money is still part of the economy. But what is “work”? Well, a definition from a Business Studies course might claim that work is “paid employment at a job or a trade, occupation, or profession”. And that’s all well and good for passing your end of term exam, but if economies are built on physical systems (which in the final analysis, they are) then it’s really the physical definition of work that’s important. And while the most mathematical of definitions is the somewhat abstract “work is the product of a force times the distance through which it acts”, we only have to wander as far as the First Law of Thermodynamics to find work equated with energy. Indeed energy is defined as “the ability to do work”. Therefore, with decreasing energy resources comes decreasing work.

This is something that cannot be avoided and something we desperately need to start facing up to. Every available piece of data seems to point towards the fact that we have already passed peak oil (2006 seems to be the agreed year for a peak in conventional crude oil). Indeed, this is playing a not insignificant role in our current economic problems, and yet we are still at the very beginning of the resource depletion crisis. Each moment we continue to wilfully ignore this issue is a moment spent making the problem worse. Which is why people like David McWilliams; intelligent people with a public platform who are apparently aware of the looming crisis; should be talking about it. They should be shouting it from the rooftops until they’re hoarse.

What they shouldn’t be doing is insisting that despite the current downturn, despite the currency problems and despite the issue of unsustainable debt, the underlying structure of the world is the same as it ever was, and that a return to growth is just around the corner if we simply make better economic and financial decisions. Because ultimately that is what “economies grow because of the human capital of the societies” translates into. It is a statement that reflects a deep economic orthodoxy and that’s something we just can’t afford right now.

Disclaimer: I’m off down to Cork to spend the Yuletide with my family tomorrow but wanted to get this piece done while David McWilliams’ article was still relatively fresh. In truth it’s a bit of a haphazard blog entry. It’s a bit hurried and could definitely have done with gestating a while longer. But what can you do?

For those who don’t immediately see the link between oil depletion and a reduction in available energy, check out my most recent article on Peak Oil which may (or may not) explain things. See: Peak oil revisited (part 1).

Leave a comment  |  Posted in: Opinion

Apr 2011

On This Deity: 18th April 1955

Yesterday’s article at On This Deity was by yours truly…

18th April 1955: The Death of Albert Einstein.

On the 18th of April 1955 Albert Einstein died in Princeton Hospital, New Jersey. He was 76 years old. One of the chief architects of the modern era, there are few other individuals whose impact on human culture has been so significant. Fifty years earlier, in 1905, during what would later be referred to as his “miracle year”, Einstein published a series of papers that sparked a revolution in physics, laying the groundwork for twenty years of remarkable work. Papers that not only revolutionised the field in which he specialised, they revolutionised the world around him. In an era when established orthodoxies were under fire from all sides… from Marx and Darwin… from Nietzsche, Freud and Joyce… from technological advance and an emerging mass media, Einstein overturned the most fundamental orthodoxy of them all – Newtonian Physics.

Our well-ordered clockwork universe dissolved into a seething ocean of quantum uncertainty, and nothing was ever quite the same again.

read the rest…

Leave a comment  |  Posted in: Announcements